Skip to main content
Log in

Nitrogen and phosphorus mineralization in three wetland types in southeast Alaska, USA

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

To improve our ability to predict how different wetland soils cycle nutrients, it is necessary to gain an understanding of N and P net mineralization rates. Since information on mineralization rates in southeast Alaska is limited, this study will improve our ability to predict how different wetlands affect soil nutrient processing. Net N and P mineralization rates were measured both in situ and via lab incubations to evaluate both actual and potential mineralization rates in three wetland types: bogs; forested wetlands; and riparian wetlands. Soil pH was an important controlling variable for both net N and P mineralization rates and soil phosphorus content significantly influenced net P mineralization rates. In situ net mineralization rates ranged from 410–1,710 μg N kg soil −1 day−1 for N and from 2–27 μg P kg soil−1 day−1 for P after 56 days. Lab incubations revealed mineralization potentials were 2–3 times greater than in situ rates. Net N and P mineralization potentials were greatest in the riparian wetlands and were significantly different from the bogs and forested wetlands. In contrast, the bogs mineralized a greater proportion of the total N and P soil pool (μg nutrient mineralized per gram nutrient) and indicates greater internal nutrient cycling within bogs. These results suggest that different wetland types of southeast Alaska process N and P differently and these wetland types should be evaluated separately in future evaluations of wetland ecosystem function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Banner, A., P. LePage, J. Moran, and A. de Groot (eds.). 2005. The HyP3 Project: Pattern, process, and productivity in hypermaritime forests of coastal British Columbia-a synthesis of 7-year results. British Columbia Ministry of Forest, Research Branch, Victoria, BC, Spec. Rep. 10.

    Google Scholar 

  • Binkley, D. and S. C. Hart. 1989. The components of nitrogen availability assessments in forest soils. p. 57–112. In B. A. Stewart (ed.) Advances in Soil Science 10. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Boone, R. D. 1992. Influence of sampling data and substrate on nitrogen mineralization: comparison of laboratory-incubation and buried bag methods for two Massachusetts soils. Canadian Journal Forest Research 22: 1895–1900.

    Article  CAS  Google Scholar 

  • Booth, M. S., J. M. Stark, and E. Rastetter. 2005. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs 75: 139–57.

    Article  Google Scholar 

  • Bormann, B. T. and R. C. Sidle. 1990. Changes in productivity and distribution of nutrients in a chronosequence at Glacier Bay National Park, Alaska. Journal of Ecology 78: 561–78.

    Article  Google Scholar 

  • Bramley, R. G. V. and R. E. White. 1990. The variability of nitrifying activity in field soils. Plant and Soil 126: 203–8.

    Article  CAS  Google Scholar 

  • Bridgham, S. D., J. Pastor, J. Janssens, C. Chapin, and T. Malterer. 1996. Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16: 45–65.

    Article  Google Scholar 

  • Bridgham, S. D., K. Updegraff, and J. Pastor. 1998. Carbon, nitrogen and phosphorous mineralization in northern wetlands. Ecology 79: 1545–61.

    Article  Google Scholar 

  • Cassman, K. G. and D. N. Munns. 1980. Nitrogen mineralization as affected by soil moisture, temperature and depth. Soil Science Society of American Journal 44: 1233–37.

    Article  CAS  Google Scholar 

  • Clymo, R. S. 1978. A model of peat bog growth. p. 187–223. In O. W. Heal and D. F. Perkins (eds.) Production Ecology of British Moors and Montane Grasslands. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Cowardin, L. M., V. Carter, F. C. Golet, and E. T. La Roe. 1987. Classification of wetlands and deepwater habitats of the United States. U. S. Fish and Wildlife Service, Office of the Biological Services, Washington, FWS/OBS-79/31.

    Google Scholar 

  • Cui, J., L. Changsheng, and C. Trettin. 2005. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model. Global Change Biology 11: 278–89.

    Article  Google Scholar 

  • D’Amore, D. V. and W. C. Lynn. 2002. Classification of forested histosols in Southeast Alaska. Soil Science Society American Journal 66: 554–62.

    Google Scholar 

  • DeBoer, W. and G. A. Kowalchuk. 2001. Nitrification in acid soils: micro-organisms and mechanisms. Soil Biology and Biochemistry 33: 853–66.

    Article  CAS  Google Scholar 

  • Eno, C. F. 1960. Nitrate production in the field by incubating the soil in polyethylene bags. Soil Science Society of America Proceedings 24: 277–79.

    Article  CAS  Google Scholar 

  • Gilliam, F. S., B. M. Yurish, and M. B. Adams. 2001. Temporal and spatial variation of nitrogen transformations in nitrogensaturated soils of a central Appalachian hardwood forest. Canadian Journal of Forestry Research 31: 1768–85.

    Article  CAS  Google Scholar 

  • Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1: 182–95.

    Article  Google Scholar 

  • Hartshorn, A. S., R. J. Southard, and C. S. Bledsoe. 2003. Structure and function of peatland-forest ecotones in southeastern Alaska. Soil Science Society of American Journal 67: 1572–81.

    CAS  Google Scholar 

  • Julin, K. R. and D. V. D’Amore. 2003. Tree growth on forested wetlands of southeastern Alaska following clearcutting. Western Journal of Applied Forestry 18: 30–34.

    Google Scholar 

  • Kuo, S. 1996. Phosphorus analysis, p. 869–919. In J. M. Bigham (ed.) Methods of Soil Analysis. Part 3. Chemical methods — SSSA. American Society of Agronomy, Inc., Madison, WI, USA.

    Google Scholar 

  • Knoepp, J. D. and W. T. Swank. 1998. Rates of nitrogen mineralization across an elevation and vegetation gradient in the southern Appalachians. Plant and Soil 204: 235–11.

    Article  CAS  Google Scholar 

  • Luxhoi, J., N. E. Nielsen, and L. S. Jensen. 2004. Effect of soil heterogeneity on gross nitrogen mineralization measured by 15N-pool dilution techniques. Plant and Soil 262: 263–75.

    Article  CAS  Google Scholar 

  • Lynn, W. C., W. E. McKinzie, and R. B. Grossman. 1974. Field laboratory tests for characterization of Histosols. p. 11–20. In A. R. Aandahl (ed.) Histosols, Their Characteristics, Classification and Use. Spec. Pub. 6. SSSA, Madison, WI, USA.

    Google Scholar 

  • McGlynn, B. L., J. J. McDonnell, J. B. Stanley, and C. Kendall. 1999. Riparian zone flowpath dynamics during snowmelt in a small headwater catchment. Journal of Hydrology 222: 75–92.

    Article  CAS  Google Scholar 

  • Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Nadelhoffer, K. J. 1990. Microlysimeter for measuring nitrogen mineralization and microbial respiration in aerobic soil incubations. Soil Science Society of America Proceedings 54: 411–15.

    Article  CAS  Google Scholar 

  • Nadelhoffer, K. J., A. E. Giblin, G. R. Shaver, and J. A. Laundre. 1991. Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72: 242–53.

    Article  Google Scholar 

  • National Wetlands Working Group (NWWG). 1988. Wetlands of Canada. Environment Canada, Sustainable development branch, Ottawa, Ontario, Canada. Ecological Land Classification Series 24.

    Google Scholar 

  • Ostrom, N. E., L. O. Hedin, J. C. von Fischer, and G. P. Robertson. 2002. Nitrogen transformations and nitrate removal at a soil-stream interface: a stable isotope approach. Ecological Applications 12: 1027–13.

    Google Scholar 

  • Pastor, J., J. D. Aber, C. A. McClaugherty, and J. M. Melillo. 1984. Aboveground production and N and P Cycling along a N mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65: 256–68.

    Article  CAS  Google Scholar 

  • Prescott, C. E., L. Vesterdal, J. Pratt, K. H. Venner, L. M. de Montigny, and J. A. Trofymow. 2000. Nutrient concentrations and nitrogen mineralization in forest floors of single species conifer plantations in coastal British Columbia. Canadian Journal Forestry Research 30: 1341–52.

    Article  CAS  Google Scholar 

  • Robertson, G. P. and P. M. Vitousek. 1981. Nitrification potentials in primary and secondary succession. Ecology 62: 376–86.

    Article  Google Scholar 

  • Robertson, G. P., P. Sollins, B. G. Ellis, and K. Lajtha. 1999. Exchangeable ions, pH, and cation exchange capacity. p. 106–14. In G. P. Robertson, D. C. Coleman, C. S. Bledsoe, and P. Sollins (eds.) Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, Inc., New York, NY, USA.

    Google Scholar 

  • Ross, D. S. and Hales, H. C. 2003. Sampling-induced increases in net nitrification in the Brush Brook (Vermont) watershed. Soil Science Society of American Journal 67: 318–26.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. USDA-SCS Agriculture Handbook 436. U.S. Government Print Office, Washington DC, USA.

    Google Scholar 

  • Trettin, C. C. and M. F. Jurgensen. 2003. Carbon cycling in wetland forest soils, p. 311–31. In J. M. Kimble, L. S. Heath, R. A. Birdsey, and R. Lal (eds.) The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Updegraff, K., J. Pastor, S. D. Bridgham, and C. A. Johnston. 1995. Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecological Applications 5: 151–63.

    Article  Google Scholar 

  • U.S. Department of Agriculture (USDA). 1997. Tongass National Forest Land and Resource Management Plan. R10-MV-338dd. USDA Forest Service, Region 10, Juneau, AK, USA.

    Google Scholar 

  • U.S. Department of Agriculture, Natural Resources Conservation Service (USDA NRCS). 2004. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report. 42, V4.0. USDA, Natural Resources Conservation Service. Lincoln, NE, USDA.

    Google Scholar 

  • Van Miegroet, V. 1995. Inorganic nitrogen determined by laboratory and field extractions of two forest soils. Soil Science Society of American Journal 59: 829–35.

    Google Scholar 

  • Verhoeven, J. T., A. E. Maltby, and M. B. Schmitz. 1990. Nitrogen and phosphorus mineralization in fens and bogs. Journal of Ecology 78: 713–26.

    Article  Google Scholar 

  • Williams, B. L. and R. E. Wheatley. 1988. Nitrogen mineralization and water-table height in oligotrophic deep peat. Biology and Fertility of Soils 6: 141–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason B. Fellman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellman, J.B., D’Amore, D.V. Nitrogen and phosphorus mineralization in three wetland types in southeast Alaska, USA. Wetlands 27, 44–53 (2007). https://doi.org/10.1672/0277-5212(2007)27[44:NAPMIT]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2007)27[44:NAPMIT]2.0.CO;2

Key Words

Navigation